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Abstract. Complex analysis is important for science because it extends analytical methods from 
real variables to complex variables and complex numbers. Also, complex number has two 
independent components, one variable will not change when the other is changing, that are 
particularly useful when two variables must be dealt with simultaneously. In this essay, we are 
going to talk about the history chronologically such as who first introduced the idea of complex 
number, who first discovered the rule of complex number, and why complex analysis is 
important. Also, the essay includes some basics about the complex variable and complex analysis. 
For example, the definition of complex number, Cauchy-Riemann Equations, and Cauchy 
Goursat theorem can help us to get further known of the complex analysis and solve some basic 
analytic problems. 
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1.  Introduction 
Mathematics is a very abstract subject, especially the function of complex variable.  It is difficult 
imagine that how function of complex variable connects with practice, since it is very sophisticated, 
uses some intricate theorem, and includes imaginary number that hardly appear in real life. However, it 
is actually everywhere. For example, physics is one of the closest subjects about the complex variable 
function. The current in our daily life is three-phase. We can use imaginary numbers to deal with the 
phase angle relationship through the RCL circuit. It reveals some physical characteristics of imaginary 
numbers in a certain sense. In addition, a well-known hypothesis, Riemann hypothesis, also contain 
function of complex variable. So, back to the beginning. What is complex numbers and complex analysis? 
A complex number is a number of the form 𝑎 + 𝑏𝑖 , where a and b are real numbers, and 𝑖  is an 
indeterminate satisfying 𝑖! = −1. For example, 4 − 7𝑖  is complex number. Moreover, the study of 
functions of a complex variable is known as complex analysis.  

Although historically we have named it “imaginary,” complex numbers are considered as “real” as 
real numbers in mathematical science, and are very fundamental to many scientific interpretations of the 
real world, from analyzing the solution of polynomial equations, algebraic characterization and circle to 
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solving engineering problems, explaining quantum mechanics, to analyzing periodic signals. Complex 
number and complex analysis can help us to solve problems that seem no conclusion and complicated. 
Also take current as an example. If the phase of the current is calculated by trigonometric function, it is 
more complex and abstract, and many engineering problems, such as impedance, alternating electricity, 
and oscillating mechanical system, cannot be solved. Instead, if we combine real number and imaginary 
number together to figure out the question, we can derive the answer successfully and skilfully. In 
conclusion, using complex number can change an intricate puzzle to into simple one. That is the reason 
we use complex number to solve problems and it is important for our modern science. 

Complex numbers have applications in many scientific fields, including signal processing, 
electromagnetism, fluid dynamics, and quantum mechanics. I am going to list three of the most 
important application of complex number and complex analysis.  

The first is system analysis. Systems are often transformed from the time domain to the frequency 
domain by the Laplace transform. So, the poles and zeros of the system can be analyzed on the complex 
plane. The root locus method, Nyquist plot and Nichols plot are used to analyze the stability of the 
system on the complex plane. Whether the poles and zeros of the system are in the left half plane or the 
right half plane, the root locus method is very important. If the pole of the system is in the right half 
plane, the causal system is unstable. If both are located in the left half plane, the causal system is stable. 
On the virtual axis, the system is critically stable. If all the zeros and poles of the system are in the left 
half plane, it is a minimum phase system. A system is all-pass if its poles and zeros are symmetric about 
the imaginary axis [1]. 

The second is Quantum Mechanics. Complex numbers are important in quantum mechanics because 
their theory is based on infinite dimensional Hilbert Spaces over complex fields. Some space-time 
Metric equations in special and general relativity can be simplified by treating the time variable as an 
imaginary number. In the practical application of applied mathematics, to solve the system of a given 
difference equation model, we usually first find out all the complex characteristic roots r of the 
characteristic equations corresponding to the linear difference equation, and then express the system as 
a linear combination of basic functions of form F (t) = E [1]. 

The third is signal analysis. Signal analysis and other fields use complex numbers to easily represent 
periodic signals. Die | z | value signal amplitude, argument arg (z) of a given frequency sine wave phase. 
The real signal can be expressed as the sum of a series of periodic functions by Fourier transform. These 
periodic functions are usually expressed as the real parts of complex functions of the form: where ω 
corresponds to angular frequency, and the complex number Z contains information about amplitude and 
phase [1]. 

2.  History of complex number 

2.1.  History development 
Solution of the cubic 𝑥" = 𝑝𝑥 + 𝑞 was developed in the Renaissance by Italian mathematicians. Three 
mathematicians Scipione del Ferro and Niccolò Tartaglia, followed by Girolamo Cardano, had proved 

that 𝑥" = 𝑝𝑥 + 𝑞 has a root as 𝑥 = -#
!
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 . First introduced by G. Cardano 

in 1545[1-4] He was trying to use complex number as a tool for finding real roots of a cubic equation 
(x" + ax + b = 0). However, he was highly confused about the expressions (e.g., 5+√−15	and 5-
√−15). Since adding them we can obtain 10, while multiplying them we will get 40. What the two 
expressions stands for that we can divide 10 in two parts, the product of which is 40. And Cardano 
considered thinking about them as “mental torture” 

In 1572, R. Bombelli introduced the symbol and the calculating rules for complex analysis [4-7]. To 
be more specific of what he had done, he considered the equation x" = 15x + 4 as an example. It can 
be clearly observed that the equation contains a root of 4. And Bombelli applied Cardan Formula to get 
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the result x=62 + √−121
"

+ 62 − √−121
"

. Although the two function seems to be utterly different 
from each other, Bombelli try to prove it is right by setting 62 + √−121

"
 = a+bi. Thus, he was able to 

deduce that62 − √−121
"

=a-bi. After a series of algebraic manipulations, he got a=2 and b=1, which 
gives x the same result as 4. This was an astonishing result as it proved the contribution of complex 
number in solving cubic equation. 

In 1730, Abraham de Moivre introduce de Moivre’s theorem that (cos(θ) + isin(θ)' = cos(nθ) +
isin(nθ) where n is an integer. And this appear in Cardan formulas also, when there is irreducible case 
to be solved [7-9]. 

Leonard Euler have introduced a number of notations and formula that are used frequently[1-10]. 
First, he establishes the notation: i=√−1 and mentioned that it is impossible to compare the square root 
of a negative number with a possible number (real numbers). Thus, from the idea of numbers (all 
numbers are possible to conceive are either greater or less than 0, or are 0 itself), the nature of complex 
numbers is impossible. So, Leonard Euler considered them as imaginary quantities, since they exist only 
in the imagination. He states the major usage of imaginary numbers are in calculation. Leonard Euler 
was also the founder of formulas: x=iy = r（cos(θ) + isin(θ)）and e()= cos(θ)+ isin(θ). He also gives 
a visualized model (a regular polygon with n side) for z' = 1 by applying x=iy = r（cos(θ) + isin(θ). 

Carl Friedrich Gauss established a+bi as “complex number” and he managed to give four proofs of 
the fundamental theorem of algebra, including the one that any nth-degree polynomial has n roots, some 
or all of which may be imaginary. In 1833, William Rowan Hamilton introduced the first rigorous 
definition of complex number that a complex number a+ib can be seen in the form (a, b). Following 
defined the addition and the multiplication of the complex couples as (a, b)+(c, d) = ( a + c, b + d ), since 
a+ib + c+id= a+c+i(b+d), And (a, b)(c, d) = (ac-bd, bc+ad), since (a+ib)(c+id)= ac+iad+ibc-bd = ac-
bd+i(ad+bc) [6]. 

Jean-Robert Argand establish the argand diagram in 1806, which used to provide a imagine 
representation for complex numbers. Turning to complex analysis, the first one start to develop the 
theory of the complex integral calculus was Augustin-Louis Cauchy. He employed imaginary numbers 
to evaluate “real integrals” like ∫ *(' +

+
	dx	,

- and ∫ log sin x 	dx.
-  which was impossible to be evaluated 

previously and obtain astonishing results ∫ *(' +
+
	dx	,

- = .
!
 and ∫ log sin x 	dx.

- = −πlog2 [1-10]. 

2.2.  Idea of complex analysis 
We were first introduced to the foundation idea of complex analysis：there are three forms of complex 
number: Cartesian form,  
z = x + iy, Polar form, z = ρe(), and Euler’s formula	e(+ = cos	(x) + isin(x). We also learnt about 

the fundamental complex multiplication and addition that similar to the normal addition and 
multiplication, along with the introduction of complex conjugation during the first lecture. If z = x + iy, 
the complex conjugate of z is zI = x − iy. Within the calculation of complex number with its complex 
conjugate, we sometimes use formula for the difference of square to help us solve the equations. 
However, there is some problems when we use polar form to represent complex number. There are 
infinite number of values of θ, but we cannot use all of them to represent a complex number. So, we 
decide to use θ between 0 and 2π. 

The idea of complex plane and complex function was also taught, which enable the further learning 
of how to judge whether a function is differentiable by using Cauchy Riemann condition. We also learnt 
how to integrate a function along a path, and unlike the integration of real number, complex integration 
doesn’t contain any geometrical significance. 

Following, several theorems: Cauchy Goursat theorem, Cauchy’s integral formula, Taylor’s formula 
and Laurent expansion and Cauchy’s residue theorem which are extremely important for complex 
integration were taught.  
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Cauchy Goursat theorem state that if f(z) is holomorphic or differentiable at every point in U, (z- ∈
U)∫ f(z)dz = 0/ . It is hard to believe because even in the case when γ in the boundary of a rectangle 
contained in U, it is true. We can use this theorem to estimate the integral value of a closed differentiable 
function.  

Cauchy’ integral formula is f(z-) =
0
!.(∫

1(3)
353#

dz = 0/ , if f(z) is holomorphic in an open region that 
include the closed disc. Also, we can complete f(z-) using only value of f(z) on the circle.  

Cauchy residual theorem is that f(z)  is differentiable at every point in U except at points 
z0, z!, z"……z6. For example, if a function is met the condition of the Cauchy residual theorem, we first 
rewrite its denominator and split it into two separate part and identity whether these points are in the 
circle or not. And finally adding the residul of the point inside the circle.[2] 

For the final project, we were assigned with a complex function with denominator Z	$ -1 and 
numerator 10Z"+(-2+2i)Z! -2Z-(2+2i). In order to integrate this function using Cauchy’s residue 
theorem, we have to change the denominator into Z- C form (C is a constant). So we factorize Z	$-1 into 
(Z-1)(Z+1)(Z-i)(Z+i) and use algebra to figure out the numerator for each denominator after splitting 
the origin function into four. Then we can extract the result for different loci by drawing the picture and 
identifying which value of Z (1, -1, i, -i) was included. Finally, according to Cauchy’s residue theorem, 
we can get the result. 

2.2.1.  Complex number and complex plane 
Definition of complex number is the complex numbers are the set {x + iy: x, y ∈ R}, with i = √−1. Also, 
we define real part of complex number as Re(z) ≔ x, and imaginary part as Im(z) ≔ y. Another 
important terminology is called absolute value, or modulus, which write as |z| and defines as 6x! + y!. 
Just as same as the real number, complex number can also do some calculation, such as addition and 
multiplication. First, the addition of complex number is very simple. Expanding the equation and the 
sum of real number is the new real part and the sum of the imaginary number is the new imaginary part. 
The general equation is (x0 + iy0) + (x! + iy!) = (x0 + x!) + i(y0 + y!) . The multiplication of 
complex numbers is similar to multiplication of binary equations. With the rule that i = √−1 , 
multiplying each part and adding together. The general equation is (x0 + iy0)(x! + iy!) =
(x0x! − y0y!) + i(x0y! + x!y0) . Moreover, there is a unique operation of complex number, 
conjugation. We express it by adding a bar over the complex number, like x + ıyIIIIIIII. This is equals to x −
iy. For another, we can use these basic rules and operations to conduct some other common equations, 
such as z + wIIIIIII = zI + w\ , zwIIII = zI ∗ w\ , 0

3
= 37

|3|!
, and so on [1]. 

However, complex number is still intangible for us to understand. We are able to use complex plane 
to visualize complex numbers. Complex plane is akin to cartesian coordinate system but its x-axis is 
real part and y-axis is imaginary part. In this case, the x-axis is called the real axis, the y-axis is called 
imaginary axis, and the coordinate plane is called the complex plane. By recalling the distance formula 
for real number, we see that modulus of z is the distance from z to origin in the complex plane. More 
generally, the modulus of z-w, or |z − w|,	is the distance from z to w. Given that coordinates can be 
rewritten into polar forms, complex number can also be written as polar form and translate this for 
complex number: for any z, ^ 3|3|^ = |z| ∗ 0

|3|
= 1. Thus, there exist θ ∈ R, so that 3|3| = cosθ + isinθ. If 

we write e() = cosθ + isinθ , then z = |z|e().  We call this polar form of z. The angle θ  is called 
argument of z and is denoted arg z. 

2.2.2.  Functions on the complex plane 
We usually consider functions’ continuity, and differentiability. First, to define continuity, let 𝛺 ∈
𝐶，we say a function 𝑓: 𝛺 → 𝐶	is continuous at 𝑧- ∈ 𝛺 if for all 𝜀 > 0 there exists 𝛿 > 0 such that 
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whatever 𝑧 ∈ 𝛺 satisfies |𝑧 − 𝑧-| < 𝛿. Then one has|𝑓(𝑧) − 𝑓(𝑧-)| < 𝜀. We say f is continuous on Ω 
if it is continuous at every 𝑧- ∈ 𝛺 [2]. 

Second, to define differentiability, we analogize this differentiability of real function. the definition 
of a function that is differentiable at x = a if lim

9→-
1(;<9)51(;)

9
 exists. Thus, the definition of a complex 

function that is differentiable at z- ∈ Ω if lim
=→9→-

1(3#<9)51(3#)
9

. Furthermore, if there exists ω ∈ C, so that 
all ε > 0 there exists δ > 0 so that whatever h ∈ C\{0} satisfies |h| < δ.	Then it has z- + h ∈ Ω and 
^1(;<9)51(;)

9
−ω^ < ε. In this case, we call ω the derivative of f at z- and write f(z-) ≔ ω. We say f is 

holomorphic on Ω if it is holomorphic at every z- ∈ Ω. We say f is entire if it is holomorphic on C.  
Then, we can prove Cauchy-Riemann Equations. Given f: Ω → C, one can always define real-value 

functions. u(x, y) ≔ Re(f(x + iy)) and v(x, y) ≔ Im(f(x + iy)). So that f(x + iy) = u(x, y) + iv(x, y). 
Suppose f is holomorphic at z- = x- + iy-. For the moment, we will view f(x, y) ≔ f(x + iy) as a 
function on real number so that it makes sense to consider its partial derivatives. We can relate that to 
f >(z-) by considering different paths C → h → 0. First consider R → h → 0: f >(z-) =

?1
?+
(x-, y-). Next 

by considering iR → ih → 0: f >(z-) =
0
(
?1
?@
(x-, y-). Therefore, we must have ?1

?+
(x-, y-) =

0
(
?1
?@
(x-, y-). 

Finally, by substituting f = u + iv and taking real and imaginary parts, we obtain the Cauchy-Riemann 
equations: ?A

?+
(x-, y-) =

?B
?@
(x-, y-) and ?A

?@
(x-, y-) = − ?B

?+
(x-, y-). Thus, if f is holomorphic on an open 

set Ω ∈ C we have shown that its real and imaginary parts have partial derivatives satisfying the Cauchy-
Riemann equations on all Ω. Furthermore, since holomorphic functions are infinitely differentiable, 
these partial derivatives will be continuous [3]. 

Third, to define analytic. For f: Ω → C, we way f is analytic on set Ω if there exists a power series 
∑ a'(z − z-)',
'C-  with positive radius of convergence R>0 so that f(z) = ∑ a'(z − z-)',

'C-  for all z in 
a neighborhood of z-. We say f is analytic on Ω if it is analytic at all z- ∈ Ω.[4] 

First, we define what is a smooth curve and what is a piece-wise smooth curve. We say r < C	 is a 
smooth curve if there exists a function z: [z, b] → C such that z([z, b]) = r and z>([z, b]) → C exists and 
is continuous here [z, b] < R	 and z>(t) = lim

9→-
3(D<9)53(D)

9
 for a < t < b. We say r is a piece-wise smooth 

curve if there exists a continuous function z: [z, b] → C and points a = a- < a0 < ⋯ < a' ≔ b. The 
function z is called a smooth curve parametrization of r. We say r starts at z(z) and ends at z(b). We 
say r is closed if z(a) = z(b), and say r is simple if z|[;,G) and z|(;,G] are injective.  

2.2.3.  Example 
For w	 ∈ 	ℂ and n ∈ N, the nth roots of w are the solutions z of the equation z' = 	w	 

Show that w ≠ 0 has exactly nth roots and find a formula for them. 
Compute the square and cube roots of i 
Suppose z is an nth root of 1 (called an nth root of unity) 
Show that 1+z+…+z'50=z n			if	z = 1

		0			otherwise	 
 
A, let w be r(cos(nθ + 2kπ) + isin(nθ + 2kπ)), which k is a non-negative integer. According to the 

formula found by Abraham de Moivre that (r
$
%(cos(θ) + isin(θ)))' = r(cos(nθ) + isin(nθ)), we can 

deduce that r(cos(nθ + 2kπ) + isin(nθ + 2kπ))= (r
$
%(cos |θ + !I.

'
} + isin |θ + !I.

'
}))' . Since θ =

θ + 2π, cos(θ)=cos |θ + !'.
'
}, so only when n > k ≥ 0 , there exist a distinct root. Thus, the number 

of roots would be n − 1 − 0 + 1 = n	,which means there are nth distinct roots exist. And the general 
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solution formula for z' = w  is r
$
%(cos |θ + !I.

'
} + isin |θ + !I.

'
})  for w= r( cos(nθ + 2kπ) +

isin(nθ + 2kπ), when k is in range n > k ≥ 0. 
B, first, according to the formula found by Euler that x+iy = r（cos(θ) + isin(θ), we can rewrite i 

into form cos |0
!
π} + isin |0

!
π}. Following, according to the general formula obtained in a part. For 

square roots, which n=2, k can only be 0 and 1. Thus the square roots for i are cos |0
$
π} + isin |0

$
π} 

which can be simplified to √!
!
+ i √!

!
, and cos |K

$
π} + isin |K

$
π} which can be simplified to (− √!

!
− i √!

!
). 

And the cube roots of i, roots cos |0
L
π} + isin |0

L
π}, cos |K

L
π} + isin |K

L
π} and cos |M

L
π} + isin |M

L
π} 

when applying k=0, k=1 and k=2 respectively to the formula. 
C, If Z =1, then all power of Z equals to 1, so add n number of 1 together we will get n. If n is not 1, 

then we can express z as cos |!I
'
π} + i sin |!I

'
π} as 1 can be written as cos(2kπ) + i sin(2kπ). So Z!, 

Z"… Z'50 , can be written as cos |$I
'
π} + i sin |$I

'
π}, cos |LI

'
π} + i sin |LI

'
π}… cos |(!'5!)I

'
π} +

i sin |(!'5!)I
'

π} respectively. Thus, we can rewrite the function and since cos (x) + cos (π − x)=0 and 

sin (x)+sin (2π − x) =0. So Re(1 + z + z! +⋯+ z'50)=1+ cos |!I
'
π}+cos |('5!)I

'
π}+cos |$I

'
π} +

cos |('5$)I
'

π}+…. + cos(π)+ cos(('<!)I
'

π)+ cos((!'5!)I
'

π)+ cos(('<$)I
'

π)+ cos((!'5$)I
'

π)+… = 1+ 
cos(π)=0 

And Im(1 + z + z! +⋯+ z'50)=sin (!I
'
π)+ sin ((!'5!)I

'
π)+ sin ($I

'
π)+ sin ((!'5$)I

'
π)+…=0 

So, if z≠ 0,so only possible sum is 0. 

3.  Conclusion 
In conclusion, in this essay, we investigate the complex analysis from its application and its history, 
together we state some basic theorems of complex analysis and their founders. Additionally, we 
introduce of complex plane and its function. After the information section, we solve a question by 
applying the theorems previously introduced. 

Following we are going to research more about the integration of section within the complex plane 
and the proof and application of practical theorems like Cauchy Goursat theorem, Cauchy’s integral 
formula, Taylor’s formula and Laurent expansion and Cauchy’s residue theorem. 
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