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Abstract. The Stokes equation describes the flow velocity of a steady state fluid in relation to 

the pressure and the external source. The corresponding variational formulation of the Stokes 

equation is studied in the paper. In more detail, we delve into the analysis of the equivalence 

relations pertaining to the variational formulations of the Stokes equations. We found that the 

variational formulation of the Stokes equation can be approximated by a type of variational 

formulation with a coefficient but without the constraint on the divergence. Then we did a 

analysis on the approximation by the finite element method to the the variational formulation 

without the constraint on the divergence, and we find that we should use preconditioning 

techniques before using the iteration. More precisely, we give an error analysis of this 

numerical computation method through rigorous proofs, and from this we deduce the need to 

use preprocessing techniques to avoid long computation times. 

Keywords: partial differential equations, variational formulation, finite element method, stokes 

equation.  

1.  Introduction 

The partial differential equations (abbreviation PDE) are used for mathematical modeling of many 

physical processes. The solution theory of partial differential equations has been widely studied for 

linear equations, but still contains many gaps for nonlinear equations. Numerical methods are usually 

used for the practical calculation of solutions. See also [1]. 

In preliminaries, we introduce the variational formulation and Sobolev space, which will be very 

useful tools to study some elliptic equations. In fact, by Green’s formula, we can transform the PDE 

with boundary condition into the variational formulation. Moreover, we also introduce the finite 

element method (FEM) in this section. FEM is a general numerical method applied to various physical 

tasks. By using more and more parameters (e.g. more and more, smaller and the approximate solution 

can be improved. 

Section 3 studies the variational formulation of the Stokes equation. The first problem studied is the 

Stokes equation with a one-part boundary with homogeneous Dirichlet conditions, and we find that the 

corresponding variational formulation is equivalent to the variational formulation in symmetric form. 

Then the Stokes equation with a boundary decomposition into two different parts of the non-

homogeneous Dirichlet condition is studied. Then an attempt is made to approximate the solution of 
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the variational formulation (with homogeneous Dirichlet conditions and non-homogeneous Dirichlet 

conditions, with coefficients but no divergence constraints, proving that the approximation has a 

convergence rate. Finally, the approximation of the variational formulation without divergence 

constraints by the finite element method is analyzed. By analyzing the condition number of the matrix, 

it is found that the complexity of the algorithm will be very large, so it is necessary to calculate the 

corresponding numerical solution using preprocessing techniques, and then use iteration. 

2.  Some preliminaries 

2.1.  Hilbert space 

Definition 2.1. The metric space 𝑈 with the bilinear form (⋅,⋅)𝑈 is a Hilbert space where: 

 ∀𝑢 ∈ 𝑈, ∥ 𝑢 ∥𝑈= √(𝑢, 𝑢)𝑈. (2.1) 

We then define weak convergence in Hilbert spaces, which will be important in our future research, 

see also in Lecture 19 in [2]: 

Definition 2.2. In Hilbert space U, we have 

 ∀𝑣 ∈ 𝑉, lim
𝑛→+∞

(𝑣𝑛, 𝑣)𝑈 = (𝑣∞, 𝑣)𝑈 ∙ (2.2) 

We can see this in the modest convergence with vn ⇀ v∞ when n tends to +∞. 

Based on the definition of weak convergence, which can also be seen in Chapter 8 in [3], we derive 

the following proposition by Cauchy-Schwarz inequality: 

Proposition 2.3. Let (vn)n∈ℕ be a sequence in Hilbert space V that converges strongly to v∞ ∈ V, 

then (vn)n∈ℕ converges weakly to v∞. 

Proposition 1.3 also explains why Proposition 1.2 holds, since it is convergent in a general sense. 

Proposition 2.4. Any weakly convergent sequence in Hilbert space V is bounded. 

In the converse, we have the following conclusion: 

Theorem 2.5. (vn)n∈ℕ is a bounded sequence of V. We can obtain a sub-sequence which converges 

weakly from (vn)n∈ℕ. 

Remark 2.6. We note that bounded sequences must have weakly convergent sub-sequences in 

infinite dimensional Hilbert spaces, but we are not sure whether sub-sequences are strongly 

convergent. 

Remark 2.7. We note that a Cauchy Sequence and a strongly convergent sequence are mutually 

sufficient and necessary conditions in a Hilbert Space. 

2.2.  Sobolev space 

First, we specify the weak derivative and weak divergence in 𝐿2(Ω) to introduce Sobolev spaces: 

Definition 2.8. v is a function in L2(Ω). If functions in form i ∈ L2(Ω) for i ∈ {1, … , N}, such that 

for any function ϕ ∈ Cc
∞(Ω), exist, we will get the following equation, then v is weakly derivable in 

L2(Ω) 

∫ 𝑣
𝛺

(𝑥)
∂𝜙

∂𝑥𝑖
(𝑥)𝑑𝑥 = − ∫ 𝑤𝑖𝛺

(𝑥)𝜙(𝑥)𝑑𝑥.  

Furthermore, let a vector-valued function σ whose components all belong to L2(Ω) : Ω → ℝN. σ 

weakly diverges in L2(Ω) if there is a function w ∈ L2(Ω) that for any function ϕ ∈ Cc
∞(Ω), then: 

∫ 𝜎
𝛺

(𝑥) ⋅ ∇𝜙(𝑥)𝑑𝑥 = − ∫ 𝑤
𝛺

(𝑥)𝜙(𝑥)𝑑𝑥  

w is the weak divergence of σ denoted div σ, see also in Part II, Chapter 5 in [4]. 

Proceedings of the 2023 International Conference on Mathematical Physics and Computational Simulation
DOI: 10.54254/2753-8818/12/20230421

2



Remark 2.9. In fact, we can deduce that v  is weakly derivable with respect to xi  if partial 

derivative 
∂v

∂xi
 exists. However, if u is weakly derivable with respect to xi, we cannot get the existence 

of the partial derivative 
∂v

∂xi
 exists. This is why we call it the weak derivative. 

The Sobolev space Hm with m ∈ ℕ∗ is defined: 

Definition 2.10. Ω is a domain of ℝN. We define the Sobolev space H1(Ω) by: 

𝐻1(Ω) = {𝑣 ∈ 𝐿2(Ω) such that ∀i∈{1,…,N},
𝜕𝑣

𝜕𝑥𝑖
∈ 𝐿2(Ω)},  

We can also define Hm(Ω)(m ≥ 2) by: 

𝐻𝑚(Ω) = {𝑣 ∈ 𝐿2(Ω)such that,∀𝛼with|𝛼| ≤ 𝑚, 𝜕𝛼𝑣 ∈ 𝐿2(Ω)} 

with 

𝜕𝛼𝑣(𝑥) =
𝜕|𝛼|𝑣𝛼

𝜕𝑥1
𝛼1 … 𝜕𝑥𝑁

𝛼
(𝑥), 

Here α = (α1, … , αN) is multi-index with αi ≥ 0 and |α| = ∑ αi
N
i=1 . 

In fact, we can define a scalar product in 𝐻𝑚(Ω) and we can deduce that 𝐻𝑚(Ω) is a Hilbert space: 

Proposition 2.11. Sobolev space Hm(Ω) is a Hilbert space with the scalar product  

 ⟨𝑢, 𝑣⟩ = ∫ ∑ 𝜕𝛼
|𝛼|≤𝑚𝛺

𝑢(𝑥)𝜕𝛼𝑣(𝑥)𝑑𝑥 (2.3) 

 ‖𝑢‖𝐻𝑚(𝛺) = √⟨𝑢, 𝑢⟩ = (∫ ∑ |𝜕𝛼𝑢(𝑥)|2𝑑𝑥
|𝛼|≤𝑚

𝛺

)1 2⁄ .  (2.4) 

Proof. Confirm the case with 𝑚 = 1. For 𝑚 ≥ 2, the proof is similar to this. We recall that 𝐿2(Ω) is 

a Hilbert space. Formula (2.3) is indeed a scalar product in 𝐻1(Ω). Let (𝑢𝑛)𝑛≥1 be a Cauchy sequence 

in 𝐻1(Ω). By definition of the norm of 𝐻1(Ω), (𝑢𝑛)𝑛≥1  as well as (
∂𝑢𝑛

∂𝑥𝑖
)

𝑛≥1
 for 𝑖 ∈ {1, … , 𝑁}  are 

Cauchy sequences in 𝐿2(Ω). Since 𝐿2(Ω) is complete, there are limits 𝑢 and 𝑤𝑖 such that 𝑢𝑛 converges 

to 𝑢 and (
∂𝑢𝑛

∂𝑥𝑖
)

𝑛≥1
 tends to 𝑤𝑖 in 𝐿2(Ω). Now, we can deduce that: 

 ∫ 𝑢𝑛(𝑥)
𝜕𝜙

𝜕𝑥𝑖
(𝑥)𝑑𝑥

𝛺

= − ∫
𝜕𝑢𝑛

𝜕𝑥𝑖
(𝑥)𝜙(𝑥)𝑑𝑥

𝛺

. (2.5) 

Take the limit 𝑛 → +∞ in (2.5) and then we can obtain: 

 ∫ 𝑢(𝑥)
∂𝜙

∂𝑥𝑖
(𝑥)𝑑𝑥

Ω
= − ∫ 𝑤𝑖(𝑥)𝜙(𝑥)𝑑𝑥

Ω
,  

which proves that 𝑢 is weakly derivable. Consequently, 𝑢 belongs to 𝐻1(Ω) and (𝑢𝑛)𝑛≥1 converges to 

𝑢 in 𝐻1(Ω). 

A crucial subspace of 𝐻1(Ω) is introduced, which is noted as 𝐻0
1(Ω): 

Definition 2.12. Ω is a regular and bounded domain. H0
1(Ω) is the subspace of H1(Ω) consisting of 

functions which are null at the boundary ∂Ω. 

Remark 2.13. In fact, H0
1(Ω) is defined imperatively as the completion of Cc

∞(Ω) in H1(Ω). But 

under Ω ’s assumption and the trace theorems (which is shown in Theorem 2.18), we can show that 

this statement is equivalent to the statement of Definition 2.12. 

Before we proceed to the next statement, let us introduce the definition of the equivalent norm: 

Definition 2.14. Two norms ‖∙‖𝑎 and ‖∙‖𝛽 defined on 𝑋 are called equivalence if there are positive 

real numbers 𝐶 and 𝐷 so that for all 𝑥 ∈ 𝑋 

𝐶‖𝑥‖𝑎 ≤ ‖𝑥‖𝛽 ≤ 𝐷‖𝑥‖𝑎. 

Then we have the following statement: 
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Corollary 2.15. The norm of 𝐻0
1(Ω) can be simplified as 

 ‖𝑣‖
𝐻0

1(Ω) = (∫ |𝛻𝑣(𝑥)|2𝑑𝑥
𝛺 )

1/2
 (2.6) 

For 𝐻0
1(Ω), the norm (2.6) is equivalent to the norm (2.4) with 𝑚 = 1, so we can simplify the norm 

of 𝐻0
1(Ω). To state this, we introduce Poincaré inequality: 

Proposition 2.16. Ω is a regular and bounded domain, and constant 𝐶 > 0 so that for any function 

𝑣 ∈ 𝐻0
1(Ω), 

 ∫ |𝑣(𝑥)|2𝑑𝑥
Ω

≤ 𝐶 ∫ |∇𝑣(𝑥)|2𝑑𝑥
Ω

 (2.7) 

Using Poincaré inequality, we can easily prove Corollary 2.15. Before proving Poincaré inequality, 

we introduce Rellich-Kondrachov theorem: 

Theorem 2.17. If Ω is a regular and bounded domain, we can extract a convergent sub-sequence in 

L2(Ω). 

Then we can prove Poincaré inequality through this theorem: 

Proof. We prove by contradiction. If there is no constant 𝐶 > 0 such that, for any function 𝑣 ∈
𝐻0

1(Ω) 

 ∫ |𝑣(𝑥)|2
𝛺

𝑑𝑥 ≤ 𝐶 ∫ |∇𝑣(𝑥)|2
𝛺

𝑑𝑥  

And we have 𝑣𝑛 ∈ 𝐻0
1(𝛺) so that: 

 1 = ∫ |𝑣𝑛(𝑥)|2
𝛺

𝑑𝑥 > 𝑛 ∫ |𝛻𝑣𝑛(𝑥)|2
𝛺

𝑑𝑥 (2.8) 

Particularly, (2.8) shows that the sequence 𝑣𝑛 is bounded in 𝐻0
1(Ω). Rellich theorem proves that 

there is a sub-sequence 𝑣𝑛′ that converges in 𝐿2(Ω). Therefore, 𝑣𝑛′ is a Cauchy sequence in 𝐻0
1(Ω), so 

it is in 𝐻0
1(Ω) converges to the limit 𝑣. Since we will get: 

 ∫ |𝛻𝑣(𝑥)|2
𝛺

𝑑𝑥 = lim
𝑛′→+∞

∫ |𝛻𝑣𝑛′(𝑥)|2
𝛺

𝑑𝑥 ≤ 𝑙𝑖𝑚
𝑛′→+∞

1

𝑛′
= 0  

we can deduce that 𝑣 is a constant. But since 𝑣 is zero on the boundary ∂Ω, 𝑣 is identically zero in all 

Ω. Moreover, 

 ∫ |𝑣(𝑥)|2
𝛺

𝑑𝑥 = lim
𝑛′→+∞

∫ |𝑣𝑛′(𝑥)|2
𝛺

𝑑𝑥 = 1,  

which is a contradiction with 𝑣 = 0. 

In fact, it is not clear whether the boundary value or trajectory of 𝑣 can be defined on the boundary 

∂𝛺 , since ∂𝛺  is a zero-metric set. Fortunately, there is still a way to define the trajectory of the 

function of 𝑣∣∂Ω in 𝐻1(Ω). These basic results are called the trajectory theorem and are detailed below. 

Theorem 2.18. (Trace Theorem 𝐇𝟏) Ω is a regular and bounded domain. We define the trace 

application γ0 

𝐻1(Ω) ∩ 𝐶1(Ω‾ ) → 𝐿2(∂Ω) ∩ 𝐶(∂Ω̅̅ ̅̅ )

𝑣 → 𝛾0(𝑣) = 𝑣|𝜕Ω ∙
 

There is C > 0 and we have: 

 ‖𝑣‖𝐿2(𝜕Ω) ≤ 𝐶‖𝑣‖𝐻1(Ω). (2.9) 

Theorem 2.19. (Trace Theorem 𝐇𝟐 ) Ω  is a regular and bounded domain. We define trace 

application γ1 : 

𝐻2(Ω) ∩ 𝐶1(Ω‾ ) → 𝐿2(𝜕Ω) ∩ 𝐶(𝜕Ω̅̅ ̅̅ ) 
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𝑣 → 𝛾1(𝑣) =
∂𝑣

∂𝑛
|

∂𝛺
. 

with 
∂v

∂n
= ∇u ⋅ n. This application γ1 is extended by continuity to a continuous linear application from 

H2(Ω) to L2(Ω). Particularly, there is a constant C > 0 and we have: 

 ‖
𝜕𝑣

𝜕𝑛
‖

𝐿2(𝜕𝛺)
≤ 𝐶‖𝑣‖𝐻2(𝛺) (2.10) 

According to the trace theorems and the density of 𝐶𝑐
∞(𝛺‾) in 𝐻1(𝛺) and 𝐻2(𝛺), we have the 

following Green’s formula: 

Theorem 2.20. Ω is a regular and bounded domain and we have: 

 ∫ 𝑢
Ω

(𝑥)
∂𝑣

∂𝑥𝑖
(𝑥)𝑑𝑥 = − ∫ 𝑣

Ω
(𝑥)

∂𝑢

∂𝑥𝑖
(𝑥)𝑑𝑥 + ∫ 𝑢

∂Ω
(𝑥)𝑣(𝑥)𝑛𝑖(𝑥)𝑑𝑠. (2.11) 

Moreover, if u ∈ H2(Ω) and v ∈ H1(Ω), we have: 

∫ 𝛥
𝛺

𝑢(𝑥)𝑣(𝑥)𝑑𝑥 = − ∫ ∇
𝛺

𝑢(𝑥) ⋅ ∇𝑣(𝑥)𝑑𝑥 + ∫
∂𝑢

∂𝑛∂𝛺
(𝑥)𝑣(𝑥)𝑑𝑠.                 (2.12) 

Remark 2.21. Let’s review the classic Green’s formula, we can verify that u, v ∈ Cc
∞(Ω‾ ) in (2.11), 

(2.12). We can construct two sequences (un)n≥1 ∈ Cc
∞(Ω‾ ) and (vn)n≥1 ∈ Cc

∞(Ω‾ ), converges to u ∈ 

H1(Ω)  (respectively u ∈ H2(Ω)  ) and v ∈ H1(Ω) . Let n → ∞  and then we can deduce (1.11) and 

(1.12). The trace theorems are necessary to prove the limit of the second integral on the right hand side 

of (1.11) and (1.12). 

2.3.  Poisson’s equation  

Considering the homogeneous Dirichlet boundary condition: 

 {
−𝛥𝑢 = 𝑓 in𝛺
𝑢 = 0 on∂𝛺,

 (2.13) 

The following formulation is as follows: 

Find 𝑢 ∈ 𝐻0
1(Ω) such that ∫ 𝛻

𝛺
𝑢(𝑥) ⋅ 𝛻𝑣(𝑥)𝑑𝑥 = ∫ 𝑓

𝛺
(𝑥)𝑣(𝑥)𝑑𝑥 for all 𝑣 ∈ 𝐻0

1(Ω). 

(2.14) 

We have transformed (1.13) into (1.14) and wonder if there is a unique solution 𝑢 ∈ 𝐻0
1(Ω) of the 

formed (1.13) into (1.14) and wonder if there is a unique solution 𝑢 ∈ 𝐻0
1(Ω)  of the variational 

formulation (1.14). 

Remark 2.22. We get the corresponding variational formulation: 

 Find 𝑢 ∈ 𝑉 such that 𝑎(𝑢, 𝑣) = 𝐿(𝑣) for all 𝑣 ∈ 𝑉. (2.15) 

For (1.14), we have: 

 𝑎(𝑢, 𝑣) = ∫ ∇𝑢(𝑥) ⋅ ∇𝑣(𝑥)𝑑𝑥
𝛺

 (2.16) 

and 

 𝐿(𝑣) = ∫ 𝑓
𝛺

(𝑥)𝑣(𝑥)𝑑𝑥. (2.17) 

where a(⋅,⋅) is a bilinear form on V and L(⋅) is a linear form on V. The solution of the variational 

formulation sometimes is referred to as the weak solution of the corresponding partial differential 

equation.See also Chapter 6 in [5]. 

Before analyzing the solution of (1.14), we need to introduce the Lax-Milgram theorem: 

Theorem 2.23. (Lax-Milgram Theorem) Let V  be a real Hilbert space, and (1) a(⋅,⋅)  is a 

continuous bilinear form on V, i.e., there is M > 0 so that: 

 |𝑎(𝑤, 𝑣)| ≤ 𝑀‖𝑤‖‖v‖for all𝑤, 𝑣 ∈ 𝑉. (2.18) 
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(2) here α > 0 so that: 

 𝑎(𝑣, 𝑣) ≥ 𝛼‖𝑣‖2for all 𝑣 ∈ 𝑉. (2.19) 

(3) here C > 0 so that: 

 |𝐿(𝑣)| ≤ 𝐶‖𝑣‖ 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑣 ∈ 𝑉. (2.20) 

The proof of this theorem is discussed in detail in Chapter 6.2. 

In fact, variational formulations often have physical interpretations, especially if the bilinear form 

is symmetric, the solution of the variational formula (1.15) reaches an energy minimum, which is 

naturally obtained in physics or mechanics. 

Proposition 2.24. We already have the assumptions of the Lax-Milgram theorem (1.23). 

Furthurmore, we further assume that the bilinear form is symmetric, i.e., a(w, v) = a(v, w) for all 

v, w ∈ V. Let J(v) be the energy defined for v ∈ V by: 

 𝐽(𝑣) =
1

2
𝑎(𝑣, 𝑣) − 𝐿(𝑣)  

𝐽(𝑢) = min
𝑣∈𝑉

𝐽(𝑣). 

We just need to verify (2.18)-(2.20) for 𝑎(𝑢, 𝑣) and 𝐿(𝑣) of (1.16), (1.17). From Cauchy-Schwarz 

inequality and (1.6), we can deduce that: 

(1) For 𝑢, 𝑣 ∈ 𝐻0
1(Ω) 

 |𝑎(𝑢, 𝑣)| = |∫ ∇
𝛺

𝑢(𝑥) ⋅ ∇𝑣(𝑥)𝑑𝑥| ≤ ‖∇𝑢‖
𝐿2(𝛺)‖∇v‖

𝐿2(𝛺) ≤ ‖u‖𝐻1(𝛺)‖v‖𝐻1(𝛺). (2.21) 

(2) For 𝑣 ∈ 𝐻0
1(𝛺) 

 𝑎(𝑣, 𝑣) = ∫ |∇𝑣(𝑥)|2
𝛺

𝑑𝑥 ≥
1

2
‖𝑣‖

𝐻0
1(𝛺)

2 . (2.22) 

(3) For 𝑣 ∈ 𝐻0
1(𝛺) 

 |𝐿(𝑣)| = |∫ 𝑓
Ω

(𝑥)𝑣(𝑥)𝑑𝑥| ≤ ‖𝑓‖𝐿2(Ω)‖𝑣‖𝐿2(Ω) ≤ 𝐶‖𝑣‖𝐻1(Ω). (2.23) 

Then we can easily get the conclusion that there exists a unique solution in 𝐻0
1(Ω) of (1.14). 

We can assume the solution of (1.14) solves (1.13). It can be assumed that the solution of (1.14) 

satisfies: 𝛥𝑢 = ∇ ⋅ ∇𝑢 exists in the weak sense, and 𝛥𝑢 ∈ 𝐿2(Ω) (See Remark 1.26). Then according to 

the definition of weak divergence, (1.14) can be transformed into : 

 ∫ (𝛥𝑢 + 𝑓)
𝛺

𝜙𝑑𝑥 = 0 ∀𝜙 ∈ 𝐶𝑐
∞(Ω) (2.24) 

 −Δ𝑢 = 𝑓 almost everywhere in Ω. (2.25) 

We have verified that the solution of (1.14) solves (1.13). 

Based on the above discussion, we have the following conclusion: 

Theorem 2.25. Ω is a regular and bounded domain and f ∈ L2(Ω). We can get: 

 {
−Δ𝑢 = 𝑓 inΩ

𝑢 = 0 on ∂Ω.
  

Remark 2.26. We have the following result for weak divergence: 

 |∫ 𝜎
Ω

(𝑥) ⋅ ∇𝜙(𝑥)𝑑𝑥| ≤ 𝐶‖𝜙‖𝐿2(Ω).  

Then σ  accepts a weak divergence in L2(Ω) . Therefore, if u ∈ H0
1(Ω)  satisfies (1.14), we can 

deduce that ∇u admits weak divergence in L2(Ω). See also [6,7]. 
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2.4.  Finite element method 

The following is the finite element method. Its rationale stems directly from the variational methods 

we studied in detail in the previous subsection. The basic idea is to replace the Hilbert space V with a 

finite-dimensional subspace Vh, and to propose a variational formula on this subspace. The 

approximation problem on Vh reduces to a simple analytical problem for linear systems  

We consider again the general framework of the variational forms introduced in Section 1.4. We 

consider the following mutation formulation: 

 Find 𝑢 ∈ 𝑉 𝑠uch that 𝑎(𝑢, 𝑣) = 𝐿(𝑣)   ∀𝑣 ∈ 𝑉 (2.26) 

 Find 𝑢ℎ ∈ 𝑉ℎ 𝑠uch that 𝑎(𝑢ℎ, 𝑣ℎ) = 𝐿(𝑣ℎ)   ∀𝑣 ∈ 𝑉 (2.27) 

Then we will get: 

Lemma 2.27. The inner approximation (1.27) has a unique solution. Furthermore, this solution can 

be obtained by solving a linear system of positive definite matrix which is symmetric if a(u, v) is 

symmetric. 

Proof. We write 𝑢ℎ = ∑ 𝑢𝑗
𝑁ℎ
𝑗=1 𝜙𝑗, let 𝑈ℎ = (𝑢1, … , 𝑢𝑁ℎ

) be the vector in ℝ𝑁ℎ of the coordinates of 

uh. Then (1.27) is equivalent to 

 𝒦ℎ𝑈ℎ = 𝑏ℎ (2.28) 

for 1 ≤ 𝑖, 𝑗 ≤ 𝑁ℎ 

(𝒦ℎ)𝑖𝑗 = 𝑎(𝜙𝑗, 𝜙𝑖), (𝑏ℎ)𝑖 = 𝐿(𝜙𝑖). 

The agility of the bilinear form 𝑎(𝑢, 𝑣) leads to the positive definiteness of the matrix 𝒦ℎ, which 

leads to its invertibility. In fact, for any vector 𝑈ℎ ∈ ℝ𝑁ℎ, we have: 

 𝒦ℎ𝑈ℎ ⋅ 𝑈ℎ ≥ 𝜇 ‖∑ 𝑢𝑗
𝑁ℎ

𝑗=1 𝜙𝑗‖
2

≥ 𝐶|𝑈ℎ|2with𝐶 > 0.  

The symmetry of 𝑎(𝑢, 𝑣) also means the symmetry of 𝒦ℎ. In mechanical applications the matrix 

𝒦ℎ is called the stiffness matrix. Therefore, the matrix problem (1.28) has a unique solution.  

3.  Analysis of the Stokes problem 

We place ourselves in dimension 𝑁 = 2 or 3. Consider Ω ⊂ ℝ𝑁 a bounded, regular open set. We are 

interested in the Stokes problem in Ω. The unknowns are the pressure field 𝑝: Ω → ℝ as well as the 

fluid velocity 𝑢, a vector field on Ω: 𝑢 = (𝑣𝑛)1≤𝑖≤𝑁 where (𝑢𝑖): Ω → ℝ 

Before we proceed with detailed discussion on Stokes Problem, we need to define some notations 

for the simplicity of further discussion. If each of the components of (𝑢𝑛) belongs to 𝐻1(Ω), which we 

note 𝑢 ∈ 𝐻1(Ω)𝑁, we introduce: The divergence of u: 

div𝑢 = ∑
∂𝑢𝑖

∂𝑥𝑖

𝑁

𝑖=1

∈ 𝐿2(Ω) 

The matrix field ∇𝑢 whose coefficient located row 𝑖, column 𝑗, is equal to 
∂𝑢𝑖

∂𝑥𝑖
∈ 𝐿2(Ω) : 

 𝛻𝑢 = (
𝜕𝑢𝑖

𝜕𝑥𝑖
)

1≤𝑖,𝑗≤𝑁
∈ (𝐿2(Ω))

𝑁×𝑁
.  

If A and B are matrices of size 𝑁 × 𝑁, we define: 

 𝐴: 𝐵 = ∑ 𝐴𝑖𝑗1≤𝑖,𝑗≤𝑁 𝐵𝑖𝑗 ∈ ℝet|𝐴|2 = 𝐴: 𝐴 ≥ 0.  

We can then verify that 𝐻0
1(𝛺)𝑁 equipped with the scalar product (𝑢, 𝑣) = ∫ ∇

𝛺
𝑢: ∇𝑣 , is a space of 

Hilbert space. We denote 
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 ‖𝑢‖
𝐻0

1(Ω)𝑁 = √∫ ∇
𝛺

𝑢: ∇𝑣 = √∫ |∇𝑢|2
𝛺

.  

the norm associated with this scalar product. 

Let 𝑓 ∈ 𝐿2(Ω)𝑁  be the volume force in Ω. Then the pair (𝑢, 𝑝) is a solution of the variational 

formulation: 

 Find (𝑢, 𝑝) ∈ 𝐻0
1(Ω)𝑁 × 𝐿2(Ω) such that  

 ∫ ∇
𝛺

𝑢: ∇𝑣 − ∫ 𝑝
𝛺

div𝑣 = ∫ 𝑓
Ω

⋅ 𝑣∀𝑣 ∈ 𝐻0
1(Ω)𝑁  

 ∫ 𝑞
𝛺

div𝑢 = 0∀𝑞 ∈ 𝐿2(Ω) (3.1) 

We admit here, in accordance with the courses before, that there is a solution (𝑢, 𝑝)  to this 

variational formulation, unique to the addition of a constant on the pressure 𝑝. See also in Chapter 2.1 

[8] 

3.1.  Variational formulations and edge conditions 

Proposition 3.1. Let w = (wi)1≤i≤N  and v = (vi)1≤i≤N  in H1(Ω)N . We have ∇w: ∇v =
∑ ∇N

i=1 w: ∇v. Moreover, if we suppose in addition w, v ∈ H0
1(Ω)N and w ∈ H2(Ω)N, we have 

 ∫ ∇
𝛺

𝑢: ∇𝑣 = − ∫ 𝛥
Ω

𝑤: 𝑣  whereΔ𝑤 = (Δ𝑤𝑖)1≤𝑖≤𝑁 ∈ ℝ𝑁 .  

Proof. According to Trace Theorem, we have: 

 − ∫ 𝛥
𝛺

𝑤 ⋅ 𝑣 = ∫ ∇
𝛺

𝑤: ∇𝑣 − ∫
∂𝑤

∂𝑛∂𝛺
⋅ 𝑣𝑑𝑠.  

As 𝑣 ∈ 𝐻0
1(Ω)𝑁, ∫

∂𝑤

∂𝑛∂𝛺
⋅ 𝑣𝑑𝑠 = 0 Thus we have the original equation. 

Lemma 3.2. Suppose that (u, p) ∈ H2(Ω)N × H1(Ω) solution of (1). Then (u, p) is a solution of 

the following boundary problem: 

−∇𝑢 + 𝛥𝑝 = 𝑓 almost everywhere in Ω, 

div 𝑢 = 0  almost everywhere in Ω, 

𝑢 = 0 in the sense of the traces on ∂Ω. 

Proof. We multiply the first equation by ∀𝑣 ∈ 𝐻0
1(Ω)𝑁, and have: 

 − ∫ Δ
Ω

𝑢: 𝑣 − ∫ ∇
Ω

𝑝 ⋅ 𝑣 = ∫ 𝑓
Ω

⋅ 𝑣,  

As we have proposition 3.1, we can deduce that 

 − ∫ Δ
𝛺

𝑢: 𝑣 = − ∫ ∇
𝛺

𝑢 ⋅ ∇𝑣.  

According to Trace Theorem: 

 ∫ ∇
𝛺

𝑝 ⋅ 𝑣 = − ∫ 𝑝
𝛺

⋅ div𝑣 + ∫ 𝑢
∂𝛺

⋅ 𝑣 ⋅ 𝑛𝑖(𝑥)𝑑𝑥.  

As 𝑣 ∈ 𝐻0
1(𝛺)𝑁, ∫ 𝑢

∂𝛺
⋅ 𝑣 ⋅ 𝑛𝑖(𝑥) = 0, ∫ ∇

𝛺
𝑝 ⋅ 𝑣 = − ∫ 𝑝

𝛺
⋅ div𝑣 . Thus we know that the first 

equation in the lemma can be transformed into: 

 ∫ ∇
𝛺

𝑢 ⋅ ∇𝑣 + ∫ 𝑝
𝛺

⋅ div𝑣 = ∫ 𝑓
𝛺

⋅ 𝑣  

The equation above is exactly the first equation in (1). We multiply the second equation in lemma 

by ∀𝑝 ∈ 𝐿2(Ω), and have: 

 ∫ 𝑞
𝛺

div𝑢 = 0∀𝑞 ∈ 𝐿2(Ω).  
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The equation above is exactly the third equation in (1) 

As 𝑢 ∈ 𝐻2(Ω)𝑁 and 𝑢 = 0 in the sense of the traces on ∂Ω. Thus 𝑢 ∈ 𝐻0
1(Ω)𝑁 in this lemma. 

In conclusion, the conditions in (1) and Lemma 3.2 are completely equivalent. Thus the solution for 

(1) is the solution to the equations in Lemma 3.2 as well. See also Chapter VII in [9]. 

Proposition 3.3. We denote ∇wT the transpose matrix of ∇w. Show that for all w, v ∈ H0
1(Ω)N we 

have 

 ∫ ∇
𝛺

𝑢𝑇: ∇𝑣 = ∫ div
𝛺

𝑢div𝑣  

Proof. We note that By Trace Theorem, ∀1 ≤ 𝑖 ≤ 𝑛 we have: 

 ∫
∂𝑤𝑖

∂𝑥𝑗𝛺

∂𝑣𝑗

∂𝑥𝑖
= ∫

∂𝑤𝑖

∂𝑥𝑖𝛺

∂𝑣𝑗

∂𝑥𝑗
,  

Sum the equations for 1 ≤ 𝑖 ≤ 𝑁 and 1 ≤ 𝑗 ≤ 𝑁, and we have: 

∑ ∑ ∫
∂𝑤𝑖

∂𝑥𝑗𝛺

𝑁

𝑗=1

𝑁

𝑖=1

∂𝑣𝑗

∂𝑥𝑖
= ∑ ∑ ∫

∂𝑤𝑖

∂𝑥𝑖𝛺

𝑁

𝑗=1

𝑁

𝑖=1

∂𝑣𝑗

∂𝑥𝑗
. 

As 

 

∫ ∇
Ω

𝑢𝑇: ∇𝑣 = ∑ ∑ ∫
∂𝑤𝑖

∂𝑥𝑖𝛺
𝑁
𝑗=1

𝑁
𝑖=1

∂𝑣𝑗

∂𝑥𝑗

∫ div
𝛺

𝑢div𝑣 = ∑ ∑ ∫
∂𝑤𝑖

∂𝑥𝑖𝛺
𝑁
𝑗=1

𝑁
𝑖=1

∂𝑣𝑗

∂𝑥𝑗

  

We have the original equation proved. 

Theorem 3.4. The variational formulation (1) is equivalent to (that is, has the same set of solutions 

as): 

 Find (𝑢, 𝑝) ∈ 𝐻0
1(𝛺)𝑁 × 𝐿2(Ω) such that  

 ∫ (∇𝑢 + ∇𝑢𝑇)
Ω

: ∇𝑣 − ∫ 𝑝
Ω

div𝑣 = ∫ 𝑓
𝛺

⋅ 𝑣 ∀𝑣 ∈ 𝐻0
1(𝛺)𝑁 ,  

 ∫ 𝑞
𝛺

div𝑢 = 0, ∀𝑞 in 𝐿2(Ω)  

Proof. As the two sets of formulations are all the same except for two, we only need to prove that 

the different two equations are actually the same under the conditions given. That is to prove: 

 

∫ (∇𝑢 + ∇𝑢𝑇)
𝛺

: ∇𝑣 − ∫ 𝑝
𝛺

div𝑣 = ∫ ∇
𝛺

𝑢: ∇𝑣 − ∫ 𝑝
𝛺

div𝑣

⇔ ∫ (∇𝑢 + ∇𝑢𝑇)
𝛺

: ∇𝑣 = ∫ ∇
𝛺

𝑢: ∇𝑣

⇔ ∫ ∇
𝛺

𝑢𝑇: ∇𝑣 = 0.

  

As from lemma 3.3 we know that ∫ ∇𝑢𝑇: ∇𝑣
𝛺

= ∫ div
𝛺

𝑢  div  𝑣 As ∫ 𝑞
𝛺

div𝑢 = 0∀𝑞 in 𝐿2(Ω) We 

use the Trace Theorem and can deduce that div 𝑢 = 0 on ∂Ω Thus ∫ div 
Ω

𝑢 div  𝑣 = 0 = ∫ ∇𝑢𝑇: ∇𝑣
𝛺

 

Suppose ∂Ω decomposed into two distinct nonempty parts Γ1 and Γ2 of nonzero 𝑁 − 1 dimensional 

measure such that ∂Ω = Γ1 ∪ Γ2. We denote by γ1: 𝐻1(Ω) → 𝐿2(Γ1) the trace application on Γ1 and we 

note 

 𝐻0,Γ1

1 = {𝑣 ∈ 𝐻1(Ω)𝑁, 𝛾1𝑣𝑖 = 0for1 ≤ 𝑖 ≤ 𝑁}.  

We consider the two variational formulations 

Find(𝑢, 𝑝) ∈ 𝐻0,𝛤1

1 × 𝐿2(𝛺)such that 

 ∫ ∇𝑢: ∇𝑣
𝛺

− ∫ 𝑝
𝛺

div 𝑣 = ∫ 𝑓
𝛺

⋅ 𝑣 ∀𝑣 ∈ 𝐻0,Γ1

1 ,  
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 ∫ 𝑞
𝛺

div 𝑢 = 0 ∀𝑞 in 𝐿2(Ω). (3.2) 

Find (𝑢, 𝑝) ∈ 𝐻0,𝛤1

1 × 𝐿2(𝛺) such that 

 ∫ (∇𝑢 + ∇𝑢𝑇)
Ω

: 𝛻𝑣 − ∫ 𝑝
Ω

𝑑𝑖𝑣𝑣 = ∫ 𝑓
Ω

⋅ 𝑣∀𝑣 ∈ 𝐻0,Γ1

1   

 ∫ 𝑞
Ω

div 𝑢 = 0 ∀𝑞 in 𝐿2(Ω) (3.3) 

Lemma 3.5. Let w ∈ H2(Ω)N and v ∈ H1(Ω)N. We assume div w = 0, and we denote by n the 

unit outgoing normal at Ω. Give, in terms of ∇w and ∇wT, the expression for the fields of matrices A 

and B of size N × N such that 

 ∫ ∇𝑤: ∇𝑣
Ω

= − ∫ Δ
Ω

𝑤 ⋅ 𝑣 + ∫ 𝐴𝑛∂Ω
⋅ 𝑣,  

and 

 ∫ ∇𝑤𝑇: ∇𝑣
𝛺

= ∫ 𝐵𝑛∂𝛺
⋅ 𝑣..  

Proof. For the first equation, use Trace theorem, and we have: 

 ∫ ∇𝑤: ∇𝑣
𝛺

= − ∫ Δ𝑢: 𝑣
𝛺

+ ∫
∂𝑢

∂𝑛
(𝑥)𝑣(𝑥)

∂𝛺
,  

Therefore, 𝐴𝑛 =
∂𝑢

∂𝑛
(𝑥) 

For the second equation, we have: 

 

∫ ∇𝑤𝑇: ∇𝑣 = ∑ ∫
∂𝑤𝑗

∂𝑥𝑖Ω
⋅

∂𝑣𝑖

∂𝑥𝑗
1≤𝑖,𝑗≤𝑁Ω

= ∑ −1≤𝑖,𝑗≤𝑁 ∫
∂

∂𝑥𝑖
(

∂𝑤𝑗

∂𝑥𝑗
) 𝑣𝑖𝛺

+ ∑ ∫
∂𝑤𝑗

∂𝑥𝑖∂𝛺
𝑣𝑖𝑛𝑗1≤𝑖,𝑗≤𝑁

= ∑ ∫
∂

∂𝑥𝑖Ω1≤𝑖≤𝑁 (div 𝑤)𝑣𝑖 + ∑ ∫ (∑
𝜕𝑤𝑗

𝜕𝑥𝑖
1≤𝑗≤𝑁 𝑛𝑗)

∂𝛺
𝑣𝑖1≤𝑖≤𝑁

  

Thus 𝐵𝑛 = ∇𝑤𝑇 

Theorem 3.6. Suppose that (u, p) ∈ H2(Ω)N × H1(Ω)  is the solution of (3.2). Give with 

justification the boundary problem verified by (u, p) . Do the same in the case where (u, p)  is a 

solution of (3.3). 

Proof. Using Trace Theorem, we have the following deductions for (3.2): 

 

∫ ∇
Ω

𝑢: ∇𝑣 − ∫ 𝑝
Ω

div 𝑣 = − ∫ Δ
Ω

𝑢 ⋅ 𝑣 + ∫ ∇
Ω

𝑝 ⋅ 𝑣

= − ∫ Δ
Ω

𝑢 ⋅ 𝑣 + ∫ ∇
∂𝛺

𝑢𝑛 ⋅ 𝑣 + ∫ ∇
Ω

𝑝 ⋅ 𝑣 − ∫ 𝑝
∂Ω

𝑛 ⋅ 𝑣

= − ∫ Δ
Ω

𝑢 ⋅ 𝑣 + ∫ ∇
Ω

𝑝 ⋅ 𝑣 + ∫ (∇𝑢 ⋅ 𝑛 − 𝑝𝑛)
∂Ω

⋅ 𝑣

= ∫ 𝑓
Ω

⋅ 𝑣

  

As ∫ 𝑞
𝛺

div 𝑢 = 0∀𝑞 ∈ 𝐿2(), we have that: 

{

Δ𝑢 + ∇𝑝 = 𝑓 inΩ

𝑑𝑖𝑣 𝑢 = 0 in𝜔
𝑢 = 0 onΓ1

∇𝑢𝑛 − 𝑝𝑛 = 0 onΓ2

 

Next we do the same thing for (3.3) : 
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∫ (∇𝑢 + ∇𝑢𝑇)
Ω

: ∇𝑣 − ∫ 𝑝
Ω

div 𝑣

= − ∫ (Δ𝑢 + Δ𝑢𝑇)
Ω

⋅ 𝑣 + ∫ ∇
Ω

𝑝 ⋅ 𝑣

= − ∫ Δ
Ω

𝑢 ⋅ 𝑣 + ∫ ∇
∂Ω

𝑢𝑛 ⋅ 𝑣 + ∫ div
Ω

𝑢div𝑣 + ∫ ∇
∂Ω

𝑢𝑇𝑛 ⋅ 𝑣 + ∫ ∇
Ω

𝑝 ⋅ 𝑣 − ∫ 𝑝
∂Ω

𝑛 ⋅ 𝑣

= − ∫ 𝛥
Ω

𝑢 ⋅ 𝑣 + ∫ ∇
Ω

𝑝 ⋅ 𝑣 + ∫ (∇𝑢 ⋅ 𝑛 + ∇𝑢𝑇𝑛 − 𝑝𝑛)
∂Ω

⋅ 𝑣

= ∫ 𝑓
Ω

⋅ 𝑣.

  

Similarly, as ∫ 𝑞
Ω

div 𝑢 = 0∀𝑞 ∈ 𝐿2(), we have: 

{

Δ𝑢 + ∇𝑝 = 𝑓 inΩ

𝑑𝑖𝑣 𝑢 = 0 in𝜔
𝑢 = 0 onΓ1

(∇𝑢 + ∇𝑢𝑇)𝑛 − 𝑝𝑛 = 0 onΓ2

 

3.2.  Approximation of the continuous problem 

We return in the following to the Stokes problem with homogeneous Dirichlet conditions: 

Find (𝑢, 𝑝) ∈ 𝐻0
1(Ω)𝑁 × 𝐿2(Ω) such that 

 ∫ ∇
Ω

𝑢: ∇𝑣 − ∫ 𝑝
Ω

div 𝑣 = ∫ 𝑓
𝛺

⋅ 𝑣 ∀𝑣 ∈ 𝐻0
1(Ω)𝑁  

 ∫ 𝑞
Ω

div 𝑢 = 0 ∀𝑞 ∈ 𝐿2(Ω) (3.4) 

One of the difficulties appearing in the solution of this problem is related to the constraint div 𝑢 =
0 imposed on the velocity. One way to get around this difficulty, is to approximate 𝑢 by a sequence 𝑢𝜀 

solution of problems without constraint on the divergence. For this purpose, we consider, for 𝜀¿ 0, the 

variational formulation 

 Find 𝑢𝜀 ∈ 𝐻0
1(𝛺)𝑁 such that  

 ∫ ∇
𝛺

𝑢𝜀: ∇𝑣 +
1

𝜀
∫ div

𝛺
𝑢𝜀div 𝑣 = ∫ 𝑓

𝛺
⋅ 𝑣 ∀𝑣 ∈ 𝐻0

1(Ω)𝑁. (3.5) 

Lemma 3.7. There is a unique solution to the formulation (3.5). 

Proof. As 𝑢𝜀 ∈ 𝐻0
1(Ω)𝑁, we consider using Lax-Milgram theorem to verify this lemma. 

First, we prove that: 

Theorem 3.8. By choosing a suitable test function v in (3.4) and (3.5), show that, for all ε > 0, we 

have 

 ∫ |∇(𝑢𝜀 − 𝑢)|2
Ω

+
1

𝜀
∫ |div 𝑢𝜀|2

Ω
+ ∫ 𝑝

Ω
 div 𝑢𝜀 = 0  

Deduce that 

∀𝜀 > 0, ∥div𝑢𝜀∥𝐿2(𝛺) ≤ 𝜀‖𝑝‖𝐿2(Ω), 

and then 

∀𝜀 > 0, ∥𝑢𝜀 − 𝑢∥𝐻0
1(𝛺)𝑁 ≤ √𝜀‖𝑝‖𝐿2(Ω), 

Conclude 

Proof. As ∫ |∇(𝑢𝜀 − 𝑢)|2
𝛺

≥ 0 and 
1

𝜀
∫ |div 𝑢𝜀|2

𝛺
≥ 0 
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‖𝑝‖𝐿2(Ω)∥𝑑𝑖𝑣𝑢𝜀∥𝐿2(Ω) ≥ |∫ 𝑝
Ω

⋅ 𝑑𝑖𝑣 𝑢𝜀|

= ∫ |𝛻(𝑢𝜀 − 𝑢)|2

Ω

+
1

𝜀
∫ |𝑑𝑖𝑣 𝑢𝜀|2

Ω

≥
1

𝜀
∫ |𝑑𝑖𝑣𝑢𝜀|2

Ω

≥
1

𝜀
∥𝑑𝑖𝑣𝑢𝜀∥

𝐿2(Ω)
2

 

Thus we have: 

‖𝑝‖𝐿2(Ω) ≥
1

𝜀
∥div 𝑢𝜀∥𝐿2(Ω). 

Thus ∀𝜀 > 0, ∥𝑑𝑖𝑣 𝑢𝜀∥𝐿2(Ω) ≤ 𝜀‖𝑝‖𝐿2(Ω). 

As ∫ |∇(𝑢𝜀 − 𝑢)|2
Ω

≥ 0  and 
1

𝜀
∫ |div uε|2

Ω
≥ 0 , and the conclusion from the first equation, we 

have: 

 

𝜀‖𝑝‖
𝐿2(Ω)
2 ≥ ‖𝑝‖𝐿2(Ω)∥div 𝑢𝜀∥𝐿2(Ω)

≥ |∫ 𝑝
𝛺

⋅ 𝑑𝑖𝑣 𝑢𝜀|

= ∫ |∇(𝑢𝜀 − 𝑢)|2
Ω

+
1

𝜀
∫ |div 𝑢𝜀|2

𝛺

≥ ∫ |∇(𝑢𝜀 − 𝑢)|2
Ω

≥ ∥𝑢𝜀 − 𝑢∥
𝐻0

1(Ω)𝑁
2

,  

Thus we have: 

∀𝜀 > 0, ∥𝑢𝜀 − 𝑢∥
𝐻0

1(Ω)𝑁
2 ≤ 𝜀 ∥ 𝑝 ∥

𝐿2(Ω)
2  

It is easy to see that the square root of both sides of the equation is exactly the original formulation. 

We propose in the next question to reinterpret the approximation of (3.4) by (3.5) from an energy 

point of view. 

Proposition 3.9. We denote H0,div
1 = {∀v ∈ H0

1(Ω)N, divv = 0 in Ω}. Assume (u, p) is a solution 

of variational propblem (3.4).  

 Find 𝑢 ∈ 𝐻0,div
1  such that  

 𝑎(𝑢, 𝑣) = 𝑙(𝑣) ∀𝑣 ∈ 𝐻0,div
1 . (3.6) 

Deduce that u is a solution of a minimization problem that we will specify. 

3.3.  Finite element discretization 

We place ourselves in ℝ2 in this part and assume in the rest of the problem that the open 𝛺 ∈ ℝ2 is 

polygonal connected. Let us give 𝒯ℎ a triangulation of 𝛺. We consider the inner approximation of 

𝐻0
1(𝛺)𝑁 by Lagrangian finite elements of order 𝑘. For this, let us define the space  

𝑉0ℎ = {𝑣 = (𝑣1, 𝑣2) ∈ 𝒞0(Ω̅)2, such that |
v = 0 on ∂Ω

𝑣1|𝐾𝑖
∈ ℙ𝑘  𝑎𝑛𝑑 𝑣2|𝐾𝑖

∈ ℙ𝑘 , 𝑓𝑜𝑟 𝑎𝑙𝑙 𝐾𝑖 ∈ 𝒯ℎ
} 

Let us introduce the problem, posed in the space 𝑉0ℎ, a finite dimensional subspace of 𝐻0
1(Ω)𝑁 

Find  𝑢ℎ
𝜀 ∈ 𝑉0ℎ  such that 
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 ∫ 𝛻
Ω

𝑢ℎ
𝜀: 𝛻𝑣ℎ +

1

𝜀
∫ div

Ω
𝑢ℎ

𝜀div𝑣ℎ = ∫ 𝑓
Ω

⋅ 𝑣ℎ = 0 ∀𝑣ℎ ∈ 𝑉0ℎ. (3.7) 

Proposition 3.10. Show that (3.7) has a unique solution. 

Proof. Consider the proof of Proposition 3.7. Similarly, we consider the Lax-Milgram theorem 

here. 

In the following, we note 𝑢ℎ
𝜀  this solution. If (𝑢, 𝑝) is a solution of (3.4), the objective of this part is 

to show that 𝑢ℎ
𝜀  is a good approximation of 𝑢. Specifically, we wish to estimate ∥∥𝑢ℎ

𝜀 𝑢∥∥𝐻0
1(Ω)𝑁  as a 

function of 𝜀 and ℎ. 

To do this, we begin, at fixed 𝜀, by estimating the error due to the finite element discretization of 

(3.5) by (3.7). See also in [10]. 

Lemma 3.11. Show that 

∫ ∇
Ω

(𝑢ℎ
𝜀 − 𝑢𝜀): ∇𝑣ℎ +

1

𝜀
∫ div

Ω

(𝑢ℎ
𝜀 − 𝑢𝜀)𝑑𝑖𝑣𝑣ℎ = 0∀𝑣ℎ ∈ 𝑉0ℎ, 

Deduce that 𝑢ℎ
𝜀  minimizes 𝐺𝜀 on 𝑉0ℎ where 

𝐺𝜀(𝑣) = ∫ ∥∥∇(𝑢ℎ
𝜀 − 𝑢𝜀)∥∥

2

𝛺

+
1

𝜀
∫ ∥div(𝑣 − 𝑢𝜀)∥2

𝛺

, 

We then define V0h,div = {vh ∈ V0h such that div vh = 0} and we show that 

∥∥𝑢ℎ
𝜀 − 𝑢𝜀∥∥𝐻0

1(𝛺)𝑁
2

≤ min
𝑣ℎ∈𝑉0ℎ,𝑑𝑖𝑣

|𝑣ℎ − 𝑢𝜀|
𝐻0

1(𝛺)𝑁
2 +

1

𝜀
∫ |div|

𝛺

𝑢𝜀|2. 

Proof. As we are discussing about 𝑢ℎ
𝜀 , we can see them as constants here. 

∫ ∇
𝛺

(𝑢ℎ
𝜀 − 𝑢𝜀): ∇𝑣ℎ +

1

𝜀
∫ div

𝛺

(𝑢ℎ
𝜀 − 𝑢𝜀)div𝑣ℎ

= ∫ ∇
𝛺

𝑢ℎ
𝜀: ∇𝑣ℎ +

1

𝜀
∫ div

𝛺

𝑢ℎ
𝜀: ∇𝑣ℎ + ℂ

= ∫ ∇
𝛺

𝑢𝜀: ∇𝑣ℎ +
1

𝜀
∫ div

𝛺

𝑢𝜀: ∇𝑣ℎ + ℂ

 

Since 𝐺𝜀(𝑣) =
1

2
𝑎(𝑣, 𝑣) − 𝑙(𝑣), we have 𝐺𝜀(𝑣) = ∫ |𝛻(𝑢ℎ

𝜀 − 𝑢𝜀)|2
𝛺

+
1

𝜀
∫ |div(𝑣 − 𝑢𝜀)|2

𝛺
. 

We then deduce that 

 

∥∥𝑢ℎ
𝜀 − 𝑢𝜀∥∥𝐻0

1(𝛺)𝑁
2

= ∫ |∇(𝑢𝑛
𝜀 − 𝑢𝜀)|2

𝛺
𝑑𝑥

≤ 𝐺𝜀(𝑢𝑛
𝜀 )

= min
𝑣𝑛∈𝑉0ℎ

𝐺𝜀(𝑣𝑛)

≤ min
𝑣𝑛∈𝑉0ℎ,div

𝐺𝜀(𝑣𝑛)

= min
𝑣𝑛∈𝑉0ℎ,div

(∫ ∥∥∇(𝑣ℎ
𝜀 − 𝑢𝜀)∥∥

2

𝛺
+

1

𝜀
∫ ∥div𝑢𝜀∥2

𝛺
)

= min
𝑣ℎ∈𝑉0ℎ,𝑑𝑖𝑣

∥∥𝑣ℎ − 𝑢𝜀∥∥𝐻0
1(𝛺)𝑁

2 +
1

𝜀
∫ |div|

𝛺
𝑢𝜀|2

  

Theorem 3.12. Using the markups obtained in question 8, Derive a markup of the total error 

∥∥uh
ε − u∥∥H0

1(Ω)N by the sum of an interpolation-type error of u on V0h,div, and a term of order √ε. 

Proof. 
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∥∥𝑢ℎ
𝜀 − 𝑢∥∥𝐻0

1(𝛺)𝑁

≤ ∥∥𝑢ℎ
𝜀 − 𝑢𝜀∥∥𝐻0

1(𝛺)𝑁 + ∥𝑢𝜀 − 𝑢∥𝐻0
1(𝛺)𝑁

≤ min
𝑣ℎ∈𝑉0ℎ,𝑑𝑖𝑣

∥∥𝑣ℎ − 𝑢𝜀∥∥𝐻0
1(𝛺) + √

1

𝜀
∫ |div𝑢𝜀|2

𝛺
+ ∥𝑢𝜀 − 𝑢∥𝐻0

1(𝛺)𝑁

≤ ∥∥𝑣ℎ − 𝑢∥∥𝐻0
1(𝛺)𝑁 + ∥𝑢 − 𝑢𝜀∥𝐻0

1(𝛺)𝑁 + √
1

𝜀
∫ |div𝑢𝜀|2

𝛺
+ ∥𝑢𝜀 − 𝑢∥𝐻0

1(𝛺)𝑁

≤ min
𝑣ℎ∈𝑉0ℎ,𝑑𝑖𝑣

∥∥𝑣ℎ − 𝑢𝜀∥∥𝐻0
1(𝛺) + √

1

𝜀
∫ |div𝑢𝜀|2

𝛺
+ 2∥𝑢𝜀 − 𝑢∥𝐻0

1(𝛺)𝑁

≤ min
𝑣ℎ∈𝑉0ℎ,𝑑𝑖𝑣

∥∥𝑣ℎ − 𝑢𝜀∥∥𝐻0
1(𝛺) + 3√𝜀 ∥ 𝑝 ∥𝐿2(𝛺)

  

3.4.  Associated matrix problem 

We denote by 𝜙𝑖, 1 ≤ 𝑖 ≤ 𝑁ℎ, the functions of the canonical basis of the finite element space 𝑉0ℎ, so 

that each function 𝑣ℎ ∈ 𝑉0ℎ decomposes into 𝑣ℎ(𝑥) = ∑ (𝑣ℎ)𝑖
𝑁ℎ
𝑖=1 𝜙𝑖(𝑥) 

Lemma 3.13. Show that the solution of the problem (5) can be reduced to the solution of the linear 

system linear system 

Find 𝑈ℎ
𝜀 ∈ ℝ(𝑁ℎ) such that 

 (𝐴ℎ +
1

𝜀
𝐶ℎ) 𝑈ℎ

𝜀 = 𝐹ℎ. (3.8) 

Proof. We recall the (3.5) and deform it: 

 

∫ ∇
𝛺

𝑢𝜀: ∇𝑣 +
1

𝜀
∫ div

𝛺
𝑢𝜀div𝑣

= ∑ (𝑢ℎ
𝜀)𝑗

𝑁ℎ

𝑗=1 (∫ ∇
𝛺

𝜙𝑗: ∇𝜙𝑖 +
1

𝜀
∫ div

𝛺
𝜙𝑗div𝜙𝑖) ∀1 ≤ 𝑖 ≤ 𝑁ℎ.

∫ 𝑓
𝛺

⋅ 𝑣∀𝑣 ∈ 𝐻0
1(𝛺)𝑁

= ∫ 𝑓
𝛺

⋅ 𝜙𝑖∀1 ≤ 𝑖 ≤ 𝑁ℎ.

  

We let (𝐴ℎ)𝑖𝑗 = ∫ ∇
𝛺

𝜙𝑗: ∇𝜙𝑖, (𝐶ℎ)𝑖𝑗 = ∫ div
𝛺

𝜙𝑗div𝜙𝑖 and (𝐹ℎ)𝑖𝑗 = ∫ 𝛺𝑓 ⋅ 𝜙𝑖 And we could attain 

the equation in the lemma. 

Where 𝑈ℎ
𝜀 denotes the vector consisting of the unknowns (𝑢ℎ

𝜀 )𝑖 from the decomposition of 𝑈ℎ
𝜀 in 

the basis of 𝜙𝑖 , 1 ≤ 𝑖 ≤ 𝑁ℎ . We will specify the general terms of the matrices 𝐴ℎ  and 𝐶ℎ  (square 

matrices of size 𝑁ℎ × 𝑁ℎ ), as well as the general terms of the column vector 𝐹ℎ (of size 𝑁ℎ ), in terms 

of the 𝜙𝑖, 1 ≤ 𝑖 ≤ 𝑁ℎ, and 𝑓. 

Lemma 3.14. Show that the matrix Ah +
1

ε
Ch is symmetric, positive definite and that there is a 

unique solution Uh
ε  of (3.8). 

Proof. We first note the definition of "positive definite": 

∀𝑉 ∈ ℝ𝑁∽̅

𝑉𝑇𝐴 ∙ 𝑉 ≥ 0,

𝑉 = 0 when and only when 𝑉𝑇𝐴 ∙ 𝑉 ≥ 0.

 

Then, first we prove that 𝐴ℎ +
1

𝜀
𝐶ℎ is symmetric. 

This is because 

(𝐴ℎ)𝑖𝑗 = ∫ ∇
𝛺

𝜙𝑗: ∇𝜙𝑖 = (𝐴ℎ)𝑗𝑖, 

and that 

(𝐶ℎ)𝑖𝑗 = ∫ div
𝛺

𝜙𝑗div𝜙𝑖 = (𝐶ℎ)𝑗𝑖, 

Proceedings of the 2023 International Conference on Mathematical Physics and Computational Simulation
DOI: 10.54254/2753-8818/12/20230421

14



Next, we prove that 𝐴ℎ +
1

𝜀
𝐶ℎ is positive definite. 

Consider the matrix form of 𝐴ℎ and 
1

𝜀
𝐶ℎ, we then deduce that: 

 

𝑉𝑇 = ∫ (∑ 𝑣𝑖
𝑁ℎ

𝑖=1 ∇𝜙𝑖: ∑ 𝑣𝑗
𝑁ℎ

𝑖=1 ∇𝜙𝑗)
Ω

= ∫ |∇𝑣ℎ|2
Ω

≥ 0.

  

Similarly, we deduce that: 

 
1

𝜀
𝐶ℎ =

1

𝜀
∫ |div 𝑣ℎ|2

𝛺
≥ 0.  

Add up the two equations above, and we have: 

 𝐴ℎ +
1

𝜀
𝐶ℎ = ∫ |∇𝑣ℎ|2

Ω
+

1

𝜀
∫ |𝑑𝑖𝑣𝑣ℎ|2

𝛺
≥ 0.  

When the equation above equals to 0, ∫ |∇𝑣ℎ|2
Ω

= 0, Thus 𝑉 = 0 as well. And when 𝑉 = 0, ∫Ω

|∇𝑣ℎ|2 = 0, and thus 
1

𝜀
∫ |div 𝑣ℎ|2

Ω
= 0, making the equation above equals to 0 as well. 

Based on the deductions above, 𝐴ℎ +
1

𝜀
𝐶ℎ is positive definite. Therefore, 𝐴ℎ +

1

𝜀
𝐶ℎ is inversible, and 

we can solve 𝑈ℎ
𝜀 

As (𝐴ℎ +
1

𝜀
𝐶ℎ) ⋅ 𝑈ℎ

𝜀 = 𝐹ℎ, we can know that 𝑈ℎ
𝜀 = 𝐹ℎ ⋅ (𝐴ℎ +

1

𝜀
𝐶ℎ)

−1
 

Since 𝐴ℎ +
1

𝜀
𝐶ℎ is positive definite 𝐹ℎ ⋅ (𝐴ℎ +

1

𝜀
𝐶ℎ)

−1
 is unique, coming to the conclusion that 𝑈ℎ

𝜀 

is unique. 

In order to understand the difficulty of solving (8), we will estimate the conditioning of the matrix 

𝐴ℎ +
1

𝜀
𝐶ℎ. If 𝐵 is a symmetric matrix, we denote 𝜆max(𝐵) (resp. 𝜆min(𝐵)) the largest (resp. smallest) 

eigenvalue of 𝐵, and recall that, in the special case where 𝐵 is positive definite, the packing (for the 

12) of 𝐵 is the ratio 𝜆max(𝐵) /𝜆min(𝐵). 

Lemma 3.15. For A, C symmetric matrices, not necessarily positive, show that 

 
𝜆min(𝐴) + 𝜆max(𝐶) ≤ 𝜆max(𝐴 + 𝐶) ≤ 𝜆max(𝐴) + 𝜆max(𝐶),

𝜆max(𝐴) + 𝜆min(𝐶) ≥ 𝜆min(𝐴 + 𝐶) ≥ 𝜆min(𝐴) + 𝜆min(𝐶)

  

Proof. Before we prove the lemma, we first define 𝜆max(𝐴) and 𝜆min(𝐴). We define 𝜆max(𝐴) as 

max𝑈≠0
𝑈𝑇𝐵𝑈

𝑈𝑇𝑈
 and 𝜆min(𝐴) as −𝜆max(𝐴) For the first equation 

We first have the following: 

 

𝜆max(𝐴 + 𝐶) = max
𝑈≠0

𝑈𝑇(𝐴+𝐶)𝑈

𝑈𝑇𝑈

≤ max
𝑈≠0

𝑈𝑇𝐴𝑈

𝑈𝑇𝑈
+ max

𝑈≠0

𝑈𝑇𝐶𝑈

𝑈𝑇𝑈

= 𝜆max(𝐴) + 𝜆max(𝐶).

  

Moreover, we can deduce that: 
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𝜆max(𝐶) = 𝜆max(𝐴 + 𝐶 − 𝐴)

≤ 𝜆max(𝐴 + 𝐶) − 𝜆max(−𝐴)

= 𝜆max(𝐴 + 𝐶) − 𝜆min(𝐴)

  

Combine the two deductions above, we attain the first equation in the lemma 

As 𝜆min(𝐴) = −𝜆max(𝐴), 𝜆max(𝐴) = −𝜆min(𝐴) For the next equation in the lemma, we first deform it: 

 

𝜆max(𝐴) + 𝜆min(𝐶) = −𝜆min(𝐴) − 𝜆max(𝐶)

𝜆min(𝐴 + 𝐶) = −𝜆max(𝐴 + 𝐶)

𝜆min(𝐴) + 𝜆min(𝐶) = −𝜆max(𝐴) − 𝜆max(𝐶)

  

We then transform the second equation in this lemma into: 

 −𝜆min(𝐴) − 𝜆max(𝐶) ≥ −𝜆max(𝐴 + 𝐶) ≥ −𝜆max(𝐴) − 𝜆max(𝐶).  

which is exactly the first equation in the lemma. Thus it is proved as well inferring from the deduction 

of the first equation. 

Lemma 3.16. Consider A a symmetric positive definite matrix, and C ≠ 0 a symmetric positive, 

noninvertible matrix. Deduce from the previous question that the conditioning of A +
1

ε
C is of order 

1

ε
 

when ε tends to zero. 

Proof. We first define Condition number: Cond (𝐴) =
𝜆max(𝐴)

𝜆min(𝐴)
 

As C is symmetric positive, and A is positive definite, we have 𝜆min(𝐶) = 0, 𝜆min(𝐴) > 0 

Here, transforming the lemma, it is the same that we prove Cond (𝐴 +
1

𝜀
𝐶) approaches 

1

𝜀
 when 𝜀 

approaches 0 . 

Use Lemma 3.15, we have: 

 
𝜆min(𝐴) +

1

𝜀
𝜆max(𝐶) ≤ 𝜆max (𝐴 +

1

𝜀
𝐶) ≤ 𝜆max(𝐴) +

1

𝜀
𝜆max(𝐶)

1

𝜀
𝜆min(𝐶) + 𝜆max(𝐴) ≥ 𝜆min (𝐴 +

1

𝜀
𝐶) ≥ 𝜆min(𝐴) +

1

𝜀
𝜆max(𝐶)

  

As 𝜆min(𝐶) = 0and 𝜆min(𝐴) ≥ 0, we have:  

 𝜆max(𝐴)−1 ∙ (𝜆min(𝐴) +
1

𝜀
𝜆max(𝐶)) ≤ Cond(𝐴 +

1

𝜀
𝐶) ≤ 𝜆min(𝐴)−1 ∙ (𝜆max(𝐴) +

1

𝜀
𝜆max(𝐶)).  

As 𝜆max(𝐴), 𝜆max(𝐶) and 𝜆min(𝐴) are all given positive constants, we know that Cond (𝐴 +
1

𝜀
𝐶) 

is of order 
1

𝜀
 ,and that when 𝜀 tend to 0,

1

𝜀
 tends to positive infinity. 

In our case, the matrix 𝐶ℎ is likely to have a nonzero kernel because there exist in 𝑉0ℎ functions 

with zero divergence (or almost: the space 𝑉0ℎ  approaches 𝐻0
1(Ω)𝑁  when ℎ → 0 ).  Now, to 

approximate with good precision the solution u of the Stokes problem, one will want to take 𝜀 very 

small. This implies, from what we just saw, a large conditioning for 𝐴ℎ +
1

𝜀
𝐶ℎ. 

Now, we know that in this case, the solution of the linear system is sensitive to numerical errors 

and rounding. Moreover, if we use an iterative algorithm to solve the system, it converges more slowly 

as the conditioning is large. To get around this difficulty, we can for example use preconditioning 

techniques to avoid a too long computation time. 
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4.  Conclusion 

In this article, we delve into the analysis of the equivalence relations pertaining to the variational 

formulations of the Stokes equations. Furthermore, we present a rigorous theory for numerical 

computation of the variational formulation of the Stokes equation, employing an    approximate 

approach in conjunction with the finite element method. Moreover, after giving the error analysis, we 

deduced that in the actual calculation, we need to use preprocessing techniques to avoid long 

calculation time. 
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